Vaccines for the Rheumatic Disease Patient

Kevin L. Winthrop, MD, MPH Professor, School of Public Health Division of Infectious Diseases Oregon Health & Science University

Disclosures

- Research funding from Pfizer, BMS
- Scientific consultant work for Amgen, Abbvie, Pfizer, UCB, Genentech, BMS, Lilly
- Data safety monitoring boards for RCTs conducted by UCB, Roche, Astellas, Lilly, Janssen, Galapagos, Sanofi, Regeneron

Vaccine Development

Figure 1. Overview of Potential SARS-CoV-2 Vaccine Platforms

The structure of a coronavirus particle is depicted on the left, with the different viral proteins indicated. The S protein is the major target for vaccine development. The spike structure shown is based on the trimeric SARS-CoV-1 spike (PDB: 5XL3). One trimer is shown in dark blue, and the receptor binding domain, a main target of neutralizing antibodies, is highlighted in purple. The other two trimers are shown in light blue. SARS-CoV-2 vaccine candidates based on different vaccine platforms have been developed, and for some of them, pre-clinical experiments have been initiated. For one mRNA-based candidate, a clinical trial recently started to enroll volunteers shortly (ClinicalTrials.gov: NCT04283461). However, many additional steps are needed before these vaccines can be used in the population, and this process might take months, if not years. ¹For some candidates, cGMP processes have already been established. ²Clinical trial design might be altered to move vaccines through clinical testing quicker.

Table 1: Impact of disease modifying antirheumatic drugs on vaccine immunogenicity:

	Influenza	Pneumococcal	Herpes	Hepatitis	Human	Tetanus	SARS-CoV-2
			Zoster	В	papilloma virus		(mRNA)
Methotrexate	V ^{14 22 24}	↓ ^{49 50}	OK (ZVL) ⁵¹		OK 113 128 129	↓117	V ^{78 80 81}
TNF-inhibitors	OK ¹⁴ 16 20 27 28	OK14 55	OK (ZVL) 60	↓99-101	OK 113 128	OK ^{117 120*}	OK 80 81 84
Rituximab	↓↓14-17 19-21	↓↓ ¹⁴ ¹⁸ ⁴⁴⁻⁴⁶	OK T-cell			↓ ^{18 117}	↓↓ ⁷⁷ ⁷⁸⁻⁸⁰
	24 130		response				
			(RZV) ⁶¹				
Abatacept	V ^{24 26}	↓ ^{44 45}				OK (SQ) 118	√80
						↓(IV) ¹¹⁹	
JAK-inhibitor	OK ³⁰	J ³⁰				OK (tofacitinib) ¹¹⁶	V ^{78 80}
						↓(baricitinib) ⁵²	
IL-6R inhibitor	OK31	OK31				OK ¹²¹	OK ⁸⁰
IL-12/23	OK ³²	OK ⁵³		$\sqrt{101}$		OK53	OK 78
inhibitor							
IL-17 inhibitor	OK ³³⁻³⁵	OK ⁵⁴				OK ⁵⁴	OK ⁸⁰

OK: No significant/meaningful effect on vaccine immunogenicity (may include reduction in absolute post-vaccination titers if rates of protective titers are unchanged.) \downarrow : Reduces vaccine immunogenicity. $\downarrow \downarrow$: Significantly reduces vaccine immunogenicity. For OK, \downarrow , and $\downarrow \downarrow$: if no control group is available, data are compared to expected vaccine responses in the general population. <u>Empty cells indicate a lack of data</u>.

TNF = tumor necrosis factor, JAK = Janus kinase, IL = interleukin, ZVL = zoster vaccine live, RZV = recombinant zoster vaccine, SQ = subcutaneous

Diminished quantitative responses with anti-TNF

Proportion reaching HI titer >1:40 was no different between groups

Gelinck et al. Ann Rheum Dis 2008

Hepatitis B Vaccine (HBV)

Efficacy and safety of hepatitis B-vaccination in AIIRD-patients.

Hepatitis B vaccination							
Author	Year	Study design	No. cases	Efficacy	Influence of IS on efficacy	Safety	
Elkayam [151]	2002	Controlled	22 RA 22 RA-DC	68% protection	No	No flares	
Kuruma [152]	2007	Uncontrolled	28 SLE	93% protection	NA	11% flares	
Franco Salinas [148]	2009	Controlled	20 SpA-anti-TNF	Reduced in SpA-	Reduced on anti-TNF	NA	
Erkek [153]	2005	Controlled	10 SpA-DC 13 Behçet 15 HC	anti-INF No difference	NA	No	

Abbreviations: IS: immunosuppressive drugs, LoE: level of evidence, HC: healthy controls, DC: disease-control, NA: not addressed.

- IBD literature with decreased responses in those on TNFi
 - Protein vaccine (T-cell dependent)
 - Older age problematic
- Double dose vaccine improves response rate

Van Assen et al. *Autoimmunity Reviews* 2011; Gisbert JP et al Ailment Pharmacol Ther 2012; Gisbert JP et al. Am J Gastro 2012

Holding MTX and Seroprotection

Tofacitinib and HI Titer Rise

Influenza vaccine serotype

Winthrop K et al. ARD 2015

Diminished humoral responses to PPSV-23 with Rituximab

Bingham C. et al. Arthritis & Rheumatism 2010

Tocilizumab and Trivalent Influenza

MTX

Cont

TCZ

TCZ + MTX

Mori et al. Ann Rheum Dis 2012

Anti-IL-17 and influenza (Secukinumab in Healthy Controls)

TABLE 4 Proportion of subjects showing \geq 4-fold increase in titer at 4 weeks after vaccination for meningitis and in at least 2 of 3 serotypes for influenza virus^{*a*}

	No. (%) of subjec ≥4-fold increase	Difference in	
Vaccination	Secukinumab (n = 25)	Control $(n = 25)$	proportions (90% CI)
TIV MenC	20 (80.0) 19 (76.0)	20 (80.0) 18 (72.0)	0.00 (-0.19, 0.19) 0.04 (-0.16, 0.24)

" CI, confidence interval; TIV, trivalent inactivated influenza vaccine.

Herpes Zoster (Shingles)

Figure: Age standardized incidence rate for herpes zoster per 1000pys (standardized to the U.S. 2010 census)

Curtis J et al, EULAR abstract 2014

VERVE Trial

- All active anti-TNF users (most RA)
 - N=617
- 1:1 live shingles vaccine versus placebo
- Results
 - Immunogenicity diminished as expected
 - Safety---No cases of vaccine HZ in 42 days post-vaccination

able 2. GMFR in VZV-Specific IgG and IFNg levels from baseline at 6 weeks

		GMF Week 6 / Baseline	95% CI	Ratio Active / Placebo (9 5% C D)	p-value*
L _a C	Active (262)	1.33	1.18, 1.51	1.31 (1.11, 1.55)	0.0017
IgG	Placebo (278)	1.02	0.91, 1.14		0.0017
	Active (266)	1.49	1.14, 1.94	1.30	
IFNg	Placebo (280)	1.14	0.87, 1.48	(0.90, 1.90)	0.16

Two-Group t-test, using Satterthwaite method allowing for unequal coefficient of variation y treatment arms.

MFR= geometric mean fold rise; VZV = varicella zoster virus; IgG = immunoglobulin; IFNg interferon gamma; CI = confidence interval

Quillaja saponaria

Higher risk of flare

HR = 2.4 [1.3-4.5], p=0.003

12 weeks

GC

1. Rationale 2.Study Retrospective single-center study (Rheumatology, CCF, USA) IMID patients / IMID treatments = higher risk of zoster Inclusion: ≥1 RZV dose between Feb. 2018 and May 2020 Recombinant Zoster Vaccine: available, high efficacy, new adjuvant Data extracted from Electronic Medical Records Adjuvant → Theoretical risk of flares after vaccine Flares in the 12-week period after each dose? Risk factors? Are rheumatology patients at higher risk of flares after RZV? Adverse events? Zoster outbreak? 3. Results 67% female Median age 67 yo 77% received 2 doses n=359 IMID patients 8.7% adverse events Median f/u = 36 weeks 6.50 -Which IMID/treatment? Flared after RZV? On GC at time of vaccine No GC at time of vaccine IMID Total from IMID On GC n=125 ≥1 Flare n=59 0.25 -(16%) subgroups (n=359) (35%) RA 88 (25%) 37 (42%) 21 (24%) 0.00 Vasculitis 50 (14%) 23 (46%) 5 (10%) Description Time to flare (days since RZV #1) Survival analysis (multivariate Cox-model) PMR 29 (8%) 21 (72%) 5 (17%) Flares: n=59 Gout 28 (8%) 3 (11%) 5 (18%) **Key messages** A change in IS SLE 24 (7%) 4 (17%) 10 (42%) treatment was needed in 25% ✓ RZV appears safe in IMID patients **Risk factor** No flare Flare Univariate Multivariate p-value ✓ GC at time of vaccine = higher risk of flare OR [IC95] (n=300) (n=59) p-value -00 ✓ Patient + Provider discussion RA 67 (22%) 21 (36%) 0.030 1.57 [0.8-3] 0.173 Informed consent GC 31% 53% 0.002 2.31 [1.3-4] 0.004 Benefits / Risks Balance Logistic regression Jak-i 4% 10% 0.032 2.09 [0.6-6] 0.203

Optical density before and after vacciantion with subunit herpes zoster vaccine in sera of patients with rheumatoid arthritis treated with JAK-inhibitors and healthy controls

Källmark H et al. ACR abstract 2020

Pfizer mRNA vaccine (BNT162b2)

65-85 years old

Cell-mediated Responses

PBMCs of BNT162b2-immunized participants were obtained on Day 1 (pre-prime) and on Day 29 (7 days post dose 2) (cohorts 1 μg, n=8; 10 and 30 μg, n=10; 20 μg, n=9) and COVID-19-recovered human convalescent donors (HC, n=18) were stimulated overnight with an overlapping peptide pool representing the N-terminal portion of the wild-type sequence of SARS-CoV-2 S protein (S pool 1 [aa 1-643]) and were analyzed by intracellular cytokine staining flow cytometry analysis. Frequency of Sspecific CD4+ and CD8+ T cells producing IFNγ in response to S pool 1 as a fraction of total circulating CD4 and CD8 T cells are shown. Numbers indicated in the graphs are the arithmetic mean fractions.

Phase 3 "Data"

- Pfizer (BNT162b2) mRNA vaccine
 - 38,955 with two doses (21 days apart)
 - Interim analyses at 94 cases (of 164 anticipated) = 90% efficacy
- Moderna mRNA vaccine
 - 25,645 with two doses (28 days apart)
 - Interim analyses at 95 cases = 94% efficacy
- AZ adenoviral vaccine
 - UK trial with 2,700+ with two doses (28 days apart) of 12,000+ planned
 - Half dose/full dose (mistake) = 90% efficacy
 - 8,900 + vaccinated correctly in Brazil = 62% efficacy
 - US phase 3 interim results = 76% efficacy

Pfizer mRNA vaccine (BNT162b2)

Chimp Adenoviral vaccine ChAdOx1 nCoV-19c

Figure 5: PseudoNA results in trial participants and in convalescent plasma samples from 146 patients with PCR-confirmed COVID-19 and 24 asymptomatic health-care workers

Solid lines connect samples from the same participant. Boxes show median (IQR). Results for days 35 and 42 are samples from participants who received a booster dose at day 28. IC=inhibitory concentration. MenACWY=meningococcal group A, C, W-135, and Y conjugate vaccine.

Chimp Adenoviral vaccine ChAdOx1 nCoV-19c

Figure 6: Interferon-γ ELISpot response to peptides spanning the SARS-CoV-2 spike vaccine insert Error bars show median (IQR). The lower limit of detection, indicated with the dotted line, is 48 spot-forming cells per million PBMCs. PBMC=peripheral blood mononuclear cell. SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. ELISpot=enzyme linked immunospot. MenACWY=meningococcal group A, C, W-135, and Y conjugate vaccine.

What Moth Cells are Good For?

https://www.sciencemag.org/news/2020/11/will-small-long-shot-us-company-end-producing-best-coronavirus-vaccine

Protein-based Vaccine (Saponin adjuvant)

B Wild-Type SARS-CoV-2 Microneutralization

Figure 3. SARS-CoV-2 Anti-Spike IgG and Neutralizing Antibody Responses.

Phase 3 results

- JnJ Adenoviral vaccine (Ad26.COV2.S)
 - One shot, no deep freeze
 - 72% efficacy US, 57% S. Africa
- Novavax (NVX-CoV2373)
 - Protein conjugate, no deep freeze, two shot (21 days apart)
 - 89% efficacy UK, 60% S. Africa

Vaccine Induced Immune Thrombotic Thrombocytopenia

ORIGINAL ARTICLE

Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination

Marie Scully, M.D., Deepak Singh, B.Sc., Robert Lown, M.D., Anthony Poles, M.D., Thomas Solomon, M.D., Marcel Levi, M.D., David Goldblatt, M.D., Ph.D., Pavel Kotoucek, M.D., William Thomas, M.D., and William Lester, M.D.

Risk 1/100,000 with AZ, mostly female, under age 60 Risk 1/1,000,000 with JnJ vaccine, female, young

Clinical Considerations: Myocarditis and Pericarditis after Receipt of mRNA COVID-19 Vaccines Among Adolescents and Young Adults

- 393 cases in US in 306,000,000 doses
 - Mostly younger males
 - Almost all self-limited
 - Pericarditis also reported

https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html

Myocarditis/pericarditis incidence in VSD in 21-day risk interval, ages 16-39 years old (data thru May 29, 2021)

Vaccine(s) (dose #)	Cases	Doses admin	Rate per million doses (95% CI)
mRNA (both doses)	22	2,546,874	8.6 (5.4–13.1)
mRNA (dose 1)	4	1,428,872	2.8 (0.8–7.2)
mRNA (dose 2)	18	1,118,002	16.1 (9.5–25.4)
Pfizer-BioNTech (dose 1)	1	846,765	1.2 (0.0–6.6)
Pfizer-BioNTech (dose 2)	7	671,899	10.4 (4.2–21.5)
Moderna (dose 1)	3	582,107	5.2 (1.1–15.1)
Moderna (dose 2)	11	446,103	24.7 (12.3–44.1)

COVAX EULAR

- 1,519 Rheumatic Disease Patients
 - 51% inflammatory joint disease
 - 36% taking biologics, MTX 29%
- 31% with reactogenicity within 7 days
 - 19% injection site pain, 11% fatigue, 7% HA
- Flares post-vaccination were rare
 - 5% flare (almost all were arthritis/arthralgia)
- 0.1% SAE

HZ with COVID-19 and mRNA Vaccine

Figure 1 Grouped vesicles on the dorsum over an erythematous background

Methods:

The safety of the BNT162b2 mRNA vaccination was assessed in an observational study monitoring post-vaccination adverse effects in patients with AIIRD (n=491) and controls (n=99), conducted in two Rheumatology Departments in Israel.

Results:

The prevalence of HZ way 1.2% (n=6) in patients with AIIRD compared to none in controls. Six female patients aged 49±11 years with stable AIIRD: rheumatoid arthritis (n=4), Sjogren's syndrome (n=1), and undifferentiated connective disease (n=1), developed the first in a lifetime event of HZ within a short time after the first vaccine dose in 5 cases and after the second vaccine dose in one

Tartari F et a. Int J of Derm 2020; Furer V et al. Rheum 2021

Variant Strains

- B.1.1.7, UK (alpha)
- CAL.20C, California
- B.1.351 South Africa (beta)
- P1 Brazil (gamma)
- Many, many others
 - B.1.617.22 India (delta)

• More transmissible?

Wibner KC et al. Med Escape Ab, vaccine, pcr tests?

Neutralizing activity of BNT162b2 against Variants

Figure 1. Serum Neutralization of Variant Strains of SARS-CoV-2 after the Second Dose of BNT162b2 Vaccine.

Liu Y et al. NEM 2021

Delta: Natural versus Vaccine

Planas D et al. Nature 2021

Monoclonals Vs Variants

Fig. 1 | **Neutralization of the SARS-CoV-2 variants D614G, Alpha, Beta and Delta by therapeutic monoclonal antibodies.** Neutralization curves of monoclonal antibodies. Dose–response analysis of neutralization of the D614G

strain and the Alpha, Beta and Delta variants by four therapeutic monoclonal antibodies (bamlanivimab, etesivimab, casirivimab and imdevimab). Data are mean±s.d. of four independent experiments.

Planas D et al. Nature 2021

Figure 1. Vaccine Effectiveness against the Alpha and Delta Variants, According to Dose and Vaccine Type.

Shown is the effectiveness of one dose and two doses of the BNT162b2 and ChAdOx1 nCoV-19 vaccines, or either vaccine ("any"), against symptomatic disease with the B.1.1.7 (alpha) or B.1.617.2 (delta) variant of the severe acute respiratory syndrome coronavirus 2. I bars indicate 95% confidence intervals.

FIGURE 1. Whole genome sequencing lineage determination among adults hospitalized with COVID-19 — 21 academic medical centers in 18 states,*[†] March-July 2021

FIGURE 2. Sustained vaccine effectiveness* against COVID-19 among hospitalized adults, by patient status^{†,§} and interval since vaccination — 21 medical centers in 18 states,[¶] March–July 2021

Hospitalized patient status

Friedman M et al. ARD In Press

Infliximab and Diminished Ab Response to Infection?

Figure 3 Boxplot of the magnitude of anti-SARS-CoV-2 antibody reactivity stratified by biological therapy and time since prior positive PCR test. COI, cut-off index.

Figure 2 Density plot of the magnitude of anti-SARS-CoV-2 antibody reactivity stratified by biological therapy among participants who had a positive PCR to anti-SARS-CoV-2 at least 2 weeks prior to their serology sample. COI, cut-off index.

mRNA Vaccine and Transplant

 Table 2: Baseline characteristics of study HTx patients stratified by their S-IgG

 immunogenicity to a 2-dose (prime-boost) BNT162b2 mRNA vaccine

	Non-responders	Responders	p-value
	(n=19)	(n=18)	
Age (years)	68 (59, 70)	46 (34, 63)	0.034
Time from HTx (months)	119 (13, 162)	84 (32, 174)	0.891
Gender (male)	17 (89)	14 (78)	0.402
HTx indication, ischemic	11 (58)	6 (33)	0.156
Immunosuppressive drugs			
Calcineurin inhibitors	14 (74)	16 (89)	0.233
mTOR inhibitors	7 (37)	13 (72)	0.045
Oral steroids	14 (74)	13 (72)	0.923
Anti-metabolites*	16 (84)	5 (28)	0.010
Immunosuppressive drug			
protocol **			
CNI-based	12 (63)	6 (33)	0.089
CNI-reduced	2 (11)	10 (56)	0.011
CNI-free	5 (26)	2 (11)	0.305
Anti-metabolites-based	17 (89)	8 (44)	0.011
protocol			
Immunosuppression drug			
levels			
Tacrolimus level (ng/ml)	6.1 (5.9, 9.5)	4.2 (3.7, 5.5)	0.044
Cyclosporine level (ng/ml)	157 (60, 172)	81 (81, 81)	1.000
Everolimus level (ng/ml)	5 (4, 5.6)	3.6 (3.0, 5.3)	0.163

Data are presented as median (25th, 75th quartiles) or as percentages, as appropriate.

Abbreviations: CNI, calcineurin inhibitors; HTx, heart transplantation; mTOR, mammalian target of rapamycin

mRNA Response by DMARD

Figure 1. Seropositivity rate by immunosuppressive treatment.

Furer V et al. EULAR abstract 2021

Table 5 Unadjusted and adjust	sted logistic regression models exam	lining the factors associated with se	eropositivity	
	Seropositivity rate, n (%)	Unadjusted OR (95% CI)	Adjusted OR (95% CI)	P value
Age >65 years, n=246	195 (79.27)	0.33 (0.22 to 0.52)	0.43 (0.25 to 0.75)	0.002
AIIRD diagnosis				
PsA, n=165	160 (96.97)	Reference	Reference	
RA, n=263	216 (82.13)	0.14 (0.06 to 0.37)	0.31 (0.11 to 0.82)	0.02
AxSpA, n=68	67 (98.53)	2.09 (0.24 to 18.26)	2.01 (0.23 to 17.72)	0.52
SLE, n=101	93 (92.08)	0.36 (0.12 to 1.14)	0.35 (0.11 to 1.16)	0.08
IIM, n=19	7 (36.84)	0.02 (0.01 to 0.07)	0.06 (0.02 to 0.27)	<0.001
LVV, n=21	20 (95.24)	0.63 (0.07 to 5.63)	0.82 (0.09 to 7.54)	0.86
AAV, n=26	8 (30.77)	0.01 (0.004 to 0.05)	0.04 (0.01 to 0.17)	<0.001
Other vasculitis, n=23	19 (82.61)	0.15 (0.04 to 0.6)	0.26 (0.06 to 1.22)	0.09
Augo treatments				
Anti-CD20, n=87	36 (41.38)	0.05 (0.03 to 0.08)	0.13 (0.07 to 0.24)	<0.001
Anti-CD20 monotherapy, n=28	11 (39.29)	0.07 (0.03 to 0.16)	0.92 (0.33 to 2.57)	0.87
Anti-CD20 +MTX, n=14	5 (35.71)	0.07 (0.02 to 0.21)	0.94 (0.23 to 3.89)	0.93
MTX, n=176	148 (84.09)	0.64 (0.4 to 1.03)	0.58 (0.31 to 1.07)	0.08
MTX monotherapy, n=41	38 (92.68)	1.75 (0.53 to 5.79)	1.84 (0.5 to 6.74)	0.36
GC, n=130	86 (66.15%)	0.16 (0.1 to 0.29)	0.48 (0.26 to 0.87)	0.02
INH, n=172	167 (97.09)	5.6 (2.24 to 14.0)	1.89 (0.68 to 5.24)	0.22
TNFi monotherapy, n=121	119 (98.35)	9.46 (2.3 to 38.87)	2.58 (0.56 to 11.94)	0.22
TNFi +MTX, n=29	27 (93.1)	1.86 (0.44 to 7.94)	1.46 (0.31 to 6.91)	0.63
IL6i, n=37	37 (100)	NA	NA	NA
IL6i monotherapy, n=19	19 (100)	NA	NA	NA
IL6i+MTX, n=7	7 (100)	NA	NA	NA
IL17i, n=48	47 (97.92)	6.73 (0.92 to 49.32)	1.42 (0.16 to 12.83)	0.75
IL17 monotherapy, n=37	37 (100)	NA	NA	NA
1L17 +M1X, n=7	6 (85.71)	0.81 (0.1 to 6.8)	0.25 (0.02 to 2.7)	0.25
Abatacept, n=16	10 (62.5)	0.21 (0.08 to 0.6)	0.14 (0.04 to 0.43)	<0.001
Abatacept menotherapy, n=7	5 (71.43)	0.33 (0.06 to 1.74)	0.2 (0.033 to 1.16)	0.073
Abatacept+MTX, n=5	2 (40)	0.09 (0.01 to 0.53)	0.07 (0.01 to 0.48)	0.007
JAKi monotherapy, n=21	19 (90.48)	1.29 (0.3 to 5.63)	0.72 (0.15 to 3.48)	0.68
IAKI MTX n=24	22 (91.67)	1.5 (0.35 to 6.48)	1.78 (0.38 to 8.35)	0.46
MMF, n=28	18 (64.29)	0.22 (0.1 to 0.5)	0.1 (0.03 to 0.34)	0.0013
MMF monotherapy, n=5	3 (60)	0.2 (0.03 to 1.21)	0.11 (0.02 to 0.83)	0.03

AAV, antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis; AIIRD, autoimmune inflammatory rheumatic diseases; anti-CD20, CD20 inhibitors; AxSpA, axial spondyloarthritis; GC, glucocorticoids; IIM, idiopathic inflammatory myositis; IL6i, interleukin 6 inhibitors; IL17i, interleukin 17 inhibitors; JAKi, Janus kinase inhibitors; LVV, large vessel vasculitis; MMF, mycophenolate mofetil; MTX, methotrexate; PsA, psoriatic arthritis; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; TNFi, tumour necrosis factor inhibitors.

RTX and Dosing Interval

Interval (days) between the last administration of anti-CD20 and BNT162b2 mRNA vaccination

Figure 1 Cumulative seropositive rate according to the interval (days) between the last course of rituximab administration and BNT1622k vaccination. mRNA, messenger RNA.

Effects of DMARDs on mRNA Vaccine Response

Mixed IMID, low numbers of disease and therapy groups

Deepak P et al. MedRxiv 2021 pre-print non-peer reviewed

Vaccine Effect on Rheumatic Disease

Change in disease activity score following vaccination

Furer V. Ann Rheum Dis. 2021 Jun 14; Epub ahead of print.

Table 3: Guidance Related to the Use and Timing of Vaccination and Immunomodulatory Therapies in Relation to COVID-19 Vaccination in RMD Patients*

	Timing Considerations for Immunomodulatory Therapy	Level of Task Force
Medication	and Vaccination*	Consensus
Hydroxychloroquine; apremilast; IVIG; glucocorticoids, prednisone-equivalent dose <20mg/day	No modifications to either immunomodulatory therapy or vaccination timing	Strong-Moderate
Sulfasalazine; Leflunomide; Azathioprine; Cyclophosphamide (oral); TNFi; IL-6R; IL-1; IL-17; IL-12/23; IL-23; Belimumab; Glucocorticoids, prednisone-equivalent dose ≥ 20mg/day [†]	No modifications to either immunomodulatory therapy or vaccination timing	Moderate
Mycophenolate; oral calcineurin inhibitors	Assuming that disease is stable, hold for 1 week following each vaccination	Moderate
Methotrexate	Hold MTX for 1 week after each of the 2mRNA vaccine doses, for those with well-controlled disease; no modifications to vaccination timing	Moderate
Methotrexate	Hold MTX for 2 weeks after single-dose COVID vaccination, for those with well-controlled disease	Moderate
JAKI	Hold JAKi for 1 week after each vaccine dose; no modification to vaccination timing	Moderate
Abatacept SQ	Hold SQ abatacept both one week prior to and one week after the <u>first</u> COVID-19 vaccine dose (only); no interruption around the second vaccine dose	Moderate
Abatacept IV	Time vaccine administration so that the first vaccination will occur four weeks after abatacept infusion (i.e., the entire dosing interval), and postpone the subsequent abatacept infusion by one week (i.e., a 5-week gap in total); no medication adjustment for the second vaccine dose	Moderate
Cyclophosphamide IV	Time CYC administration so that it will occur approximately 1 week after each vaccine dose, when feasible	Moderate
Rituximab	Assuming that patient's COVID-19 risk is low or is able to be mitigated by preventive health measures (e.g., self-isolation), schedule vaccination so that the vaccine series is initiated approximately 4 weeks prior to next scheduled rituximab cycle; after vaccination, delay RTX 2-4 weeks after final vaccine dose, if disease activity allows	Moderate
Acetaminophen, NSAIDs	Assuming that disease is stable, hold for 24 hours prior to vaccination (no restrictions on use post vaccination to treat symptoms)	Moderate
Supplemental Dosing (i.e., booster dose)		
All immunomodulatory or immunosuppressive therapies [‡]	Except for glucocorticoids and anti-cytokine therapies (see footnote), hold all immunomodulatory or immunosuppressive medications for 1-2 weeks after booster vaccination, assuming disease activity allows.	Moderate
Rituximab§	Patients on rituximab or other anti-CD20 medications should discuss the optimal timing with their rheumatology provider before proceeding with booster vaccination	Strong

https://www.rheumatology.org/Portals/0/Files/COVID-19-Vaccine-Clinical-Guidance-Rheumatic-Diseases-Summary.pdf

Considerations for Rheum Patients

- B cell depletion therapies and COVID vaccination
 - Time to hold the next dose?
- Needed studies
 - Vaccine responses modified by DMARDs?
 - Length of vaccine protection?
 - Co-Administration studies
- How long for mask wearing and avoidance?
 - 2022 looks to be full of travel (maybe)

Acknowledgements

- UAB colleagues
- ACR and EULAR colleagues
- Oregon Health Authority colleagues
- CDC colleagues

Moderna versus Pfizer

Figure. Humoral Immune Response Following SARS-CoV-2 mRNA Vaccination

Steensels D et al. JAMA 2021

mRNA Boost of Adeno Primary

Barrios-Martins J et al. Nat Med 2021

Annals of Internal Medicine

OBSERVATIONS: CASE REPORTS

Safety and Immunogenicity of a Third Dose of SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients: A Case Series

We repeated antibody testing a median of 14 days (IQR, 14 to 17 days) after the third dose of vaccine. Of the 6 patients with low-positive antibody titers before the third dose, all had high-positive antibody titers after the third dose. In contrast, of the 24 patients with negative antibody titers before the third dose, only 6 (25%) had high-positive antibody titers after the third dose. Two (8%) had low-positive antibody titers, and 16 (67%) remained negative.

Fingolomod and Ocre Decrease mRNA response in MS

lgG+

Achiron A et al. Ther Adv Neurol Disord 2021

JnJ Vs mRNA in RMD

Figure 1 SARS-CoV-2 anti-RBD antibody titres among recipients of mRNA vs J&J vaccine. Titres could range from <0.4 U/mL to >250 U/ mL. Positive antibody is defined as an anti-SARS-CoV-2 RBD antibody titre >0.79 U/mL. Ig, immunoglobulin; J&J, Johnson & Johnson; RBD, receptor binding domain.

Po-Yu Chiang et al. ARD 2021

57	Not Fully Vaccinated	92%
5	Fully Vaccinated	8%

28 in the ICU

28	Not Fully Vaccinated	100%
0	Fully Vaccinated	0%

25 on a Ventilator

25	Not Fully Vaccinated	100%
0	Fully Vaccinated	0%

Not Fully Vaccinated: Includes unvaccinated and under-vaccinated (the latter being persons who only received one of the two-dose mRNA regimen). Fully Vaccinated: Have completed the vaccine series (either two of mRNA vaccines, or single dose of 363 vaccine).

OHSU Hospital and OHSU Health Hillsboro Medical Center

Short-term Protection from Natural Infection

Table 1: Comparison of infection rates during the Spring 2021 semester (12/28/20 to 5/1/21) among students with and without previous infections during the Fall 2020 semester.

Spring 2021						
	Population (N)	Infections (N)	Percent infected	Testing compliance ^a	Relative risk (95% CI) ^b	Estimated Protection (95% CI) ^b
Main analysi	S				-	
Fall 2020	2,021	44	2.2%	10 (83%)	0.16 (0.12 –	84% (78% -
positive					0.22)	88%)
confirmed	2,010	33	1.6%	10 (83%)	0.12 (0.09 -	88% (83% -
reinfections ^c					0.17)	91%)
Fall 2020	14,080	1,697	12.1%	10 (83%)	1 (reference)	-
negative						X

Clemson University

One Dose Good Enough Post-Infection

NATURE MEDICINE

Fig. 1 | IgG(S-RBD) antibody response to mRNA SARS-CoV-2 vaccination in individuals with and without prior SARS-CoV-2 infection. Box plots

mRNA Vaccine Real World Efficacy

TABLE 2. Person-days, SARS-CoV-2 infections, and vaccine effectiveness among health care personnel, first responders, and other essential and frontline workers, by messenger RNA immunization status — eight U.S. locations, December 14, 2020–March 13, 2021

		SARS-CoV-2 infections		Unadjusted vaccine effectiveness*	Adjusted vaccine effectiveness*,†	
COVID-19 immunization status	Person-days	No.	Incidence rate per 1,000 person-days	% (95% Cl)	% (95% Cl)	
Unvaccinated	116,657	161	1.38	N/A	N/A	
Partially immunized	41,856	8	0.19	82 (62-91)	80 (59-90)	
≥14 days after receiving first dose only§	15,868	5	0.32			
≥14 days after first dose through receipt of second dose	25,988	3	0.12			
Fully immunized						
≥14 days after second dose	78,902	3	0.04	91 (73–97)	90 (68–97)	

Abbreviations: CI = confidence interval; N/A = not applicable.

* Vaccine effectiveness was estimated using a Cox proportional hazards model accounting for time-varying immunization status.

[†] Hazard ratio is adjusted for study site.

§ Participants received first dose but had not received second dose by the end of the study period.

Figure. Odds ratios for the ordinal COVID-19 severity outcome for patients with RA on biologic or targeted synthetic DMARDs (n=1673).

The effect size is the odds of being one level higher on the ordinal scale than the reference group.

n for propensity score (PS)-matched analyses: 98 ABA and 525 TNFi; 127 RTX and 520 TNFi; 198 JAK and 527 TNFi; 107 IL6i and 525 TNFi.

Multivariable covariates and propensity score included age, sex, region, season, smoking, obesity, RA disease activity, interstitial lung disease, cancer, comorbidity count, concomitant non-biologic DMARD use, and glucocorticoid use/dose.

DMTs and COVID-19 Severity

Table 2. Multivariable Multinomial Logistic Regression Model for the Clinical Severity Outcome

	COVID-19 clinical course outcome level ^a						
Risk factor	Hospitalization only, OR (95% CI)	<i>P</i> value	ICU and/or required ventilator support, OR (95% CI)	P value	Death, OR (95% CI)	P value	
Age (every 10-y increase)	1.32 (1.12-1.56)	<.001	1.29 (0.99-1.67)	.06	1.77 (1.20-2.59)	.004	
Sex (male vs female) Disease-modifying therapy	1.41 (0.98-2.03)	.06	1.00 (0.54-1.83)	.99	3.12 (1.46-6.65)	.003	
None	1 [Reference]	NA ^b	1 [Reference]	NA ^b	1 [Reference]	NA ^b	
Fumarates	0.99 (0.52-1.88)	.90	0.26 (0.08-0.82)	.98	0.40 (0.09-1.70)	.30	
S1PR	0.65 (0.26-1.61)	.23	0.77 (0.28-2.14)	.94	0.86 (0.15-4.93)	.89	
Glatiramer acetate	1.15 (0.51-2.61)	.73	NA ^b	.96	0.86 (0.16-4.56)	.89	
Interferons	0.35 (0.08-1.57)	.11	0.29 (0.04-2.32)	.98	0.56 (0.06-5.49)	.75	
Natalizumab	0.67 (0.31-1.45)	.18	0.09 (0.01-0.73)	.98	0.80 (0.19-3.44)	.96	
Ocrelizumab	1.63 (0.98-2.72)	.009	0.91 (0.46-1.80)	.94	0.47 (0.17-1.30)	.25	
University	1.21 (0.45-3.24)	.70	0.50 (0.10-2.38)	.96	0.91 (0.18-4.73)	.83	
Rituximab	4.56 (2.10-9.90)	<.001	1.92 (0.61-6.07)	.91	2.81 (0.45-17.70)	.11	
Termunomide	0.83 (0.34-2.02)	.58	0.30 (0.06-1.37)	.98	0.48 (0.08-3.04)	.57	
Glucocorticoid use in past 2 mo							
No	1 [Reference]	NA ^b	1 [Reference]	NA ^b	1 [Reference]	NA ^b	
Unknown	0.94 (0.46 1.92)	.16	0.44 (0.10-1.94)	.19	2.13 (0.68-6.72)	.95	
Yes	2.62 (1.33-5.17)	.009	1.57 (0.49-4.97)	.21	4.17 (1.13-15.4)	.13	

Italian MS Cohort

TABLE 4. Univariate, Multivariate, and PS-Weighted Ordinal Logistic Regression Models Evaluating Risk Factors for Severe Coronavirus Disease 2019^a

	Univariate Analysis, n = 844 ^b		Multivariate Analysi	PS Analysis, n = 844 ^b		
Variable	OR (95% CI)	p	OR (95% CI)	p	OR (95% CI)	p
Age, yr	1.06 (1.04–1.08)	< 0.001	1.06 (1.03–1.08)	< 0.001	1.06 (1.03–1.10)	0.001
Sex, F vs M	0.64 (0.40–1.03)	0.068	0.69 (0.45-1.04)	0.076	0.83 (0.50-1.39)	0.49
Progressive vs RRMS	4.14 (2.70-6.35)	< 0.001	1.59 (0.81-3.01)	0.18	1.76 (0.70-4.40)	0.23
Methylprednisolone ^c	3.38 (1.49–7.67)	0.004	5.24 (2.20–12.53)	0.001	2.51 (0.99-6.44)	0.05
DMT						
No therapy ^d	1 (ref)		1 (ref)		1 (ref)	
Interferon	0.35 (0.15-0.79)	0.012	0.67 (0.28–1.65)	0.39	0.71 (0.29–1.78)	0.48
Glatiramer-acetate	0.34 (0.14-0.81)	0.015	0.77 (0.29-2.00)	0.59	1.19 (0.30–4.87)	0.80
Teriflunomide	0.48 (0.21-1.07)	0.07	0.86 (0.36-2.08)	0.74	1.17 (0.41–3.63)	0.76
Dimethyl fumarate	0.38 (0.20-0.70)	0.002	1.12 (0.55-2.30)	0.75	1.29 (0.58-2.87)	0.62
Natalizumab	0.35 (0.16-0.76)	0.009	1.30 (0.53–3.22)	0.57	1.77 (0.61–5.07)	0.29
Fingolimod	0.50 (0.26-0.98)	0.04	1.19 (0.57–2.52)	0.64	1.48 (0.66–3.34)	0.34
Anti-CD20 ^e	0.94 (0.52-1.08)	0.85	2.37 (1.18-4.74)	0.015	3.91 (1.71-8.91)	0.001

Sormani MP et al. Ann Neurol 2021